
International Journal of Multiphase Flow 35 (2009) 227–246
Contents lists available at ScienceDirect

International Journal of Multiphase Flow

journal homepage: www.elsevier .com/ locate / i jmulflow
A coupled level set and volume-of-fluid method for sharp interface simulation
of plunging breaking waves

Zhaoyuan Wang, Jianming Yang, Bonguk Koo, Frederick Stern *

IIHR-Hydroscience & Engineering, University of Iowa, Iowa City, IA 52242-1585, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 20 February 2008
Received in revised form 9 September 2008
Accepted 12 November 2008
Available online 6 December 2008
0301-9322/$ - see front matter � 2008 Elsevier Ltd. A
doi:10.1016/j.ijmultiphaseflow.2008.11.004

* Corresponding author. Tel.: +1 319 335 5215; fax
E-mail address: frederick-stern@uiowa.edu (F. Ster
A coupled level set and volume-of-fluid (CLSVOF) method is implemented for the numerical simulations
of interfacial flows in ship hydrodynamics. The interface is reconstructed via a piecewise linear interface
construction scheme and is advected using a Lagrangian method with a second-order Runge–Kutta
scheme for time integration. The level set function is re-distanced based on the reconstructed interface
with an efficient re-distance algorithm. This level set re-distance algorithm significantly simplifies the
complicated geometric procedure and is especially efficient for three-dimensional (3D) cases. The CLSVOF
scheme is incorporated into CFDShip-Iowa version 6, a sharp interface Cartesian grid solver for two-phase
incompressible flows with the interface represented by the level set method and the interface jump con-
ditions handled using a ghost fluid methodology. The performance of the CLSVOF method is first evalu-
ated through the numerical benchmark tests with prescribed velocity fields, which shows superior mass
conservation property over the level set method. With combination of the flow solver, a gas bubble rising
in a viscous liquid and a water drop impact onto a deep water pool are modeled. The computed results
are compared with the available numerical and experimental results, and good agreement is obtained.
Wave breaking of a steep Stokes wave is also modeled and the results are very close to the available
numerical results. Finally, plunging wave breaking over a submerged bump is simulated. The overall
wave breaking process and major events are identified from the wave profiles of the simulations, which
are qualitatively validated by the complementary experimental data. The flow structures are also com-
pared with the experimental data, and similar flow trends have been observed.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

One challenge of the numerical simulations of ship flows is the
highly dynamic interface between air and water, which undergoes
complicated topological changes and involves strong air/water
interactions, such as breaking waves, formation of spray, turbu-
lence, and entrainment of air around ships. The location of this rap-
idly moving surface is unknown and needed as part of the solution.

A number of numerical methods have been developed over the
past few decades (Hirt and Nichols, 1981; Osher and Sethian, 1988;
Unverdi and Tryggvason, 1992; Sussman et al., 1994) for the inter-
face modeling, among which two Eulerian-based methods, the le-
vel set (LS) and volume-of-fluid (VOF) methods, have been
extensively employed for interface capturing in ship hydrodynam-
ics community (Carrica et al., 2007; Dommermuth et al., 2004;
Klemt, 2005; Iafrati et al., 2001; Yang and Stern, 2007a,b). These
two methods are well suited for flows with large flow distortions
and geometrical changes. In the LS method, the interface is de-
scribed by the LS function which is defined as a signed distance
function. The normal and curvature can be easily and accurately
ll rights reserved.
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calculated from the continuous and smooth distance function. As
compared to the VOF method, the LS method is easy to implement,
and the extension to three-dimensional (3D) coordinate is simple
and straightforward. However, one serious drawback of the LS
method is that mass conservation is often violated. Due to the poor
mass conservation property of the LS method, wave breaking, for-
mation of spray and entrainment of air cannot be accurately cap-
tured. For example, although sufficient grid resolution is
provided, some initially formed droplets or air bubbles tend to
shrink in size and eventually disappear during the computations.
This problem is especially serious when a coarse grid is used as will
be demonstrated in the simulations conducted using the LS based
code. In the VOF method, the interface is captured by the VOF func-
tion which represents the volume fraction occupied by the liquid
phase in each computational cell. The VOF function is not continu-
ous across the interface. In order to advect the VOF function, the
interface needs to be reconstructed using a geometric technique.
The VOF method has excellent mass conservation properties but
it lacks accuracy for the direct calculations of normal and curvature
due to the discontinuous spatial derivatives of the VOF function
near the interface. Moreover, the implementation of the VOF meth-
od is difficult since a complicated geometric procedure is needed
for the interface reconstruction.
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Fig. 1. Flow chart of the coupled level set and volume-of-fluid method.
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Attempts have been made to improve the mass conservation
property of the LS method by using higher order schemes (Peng
et al., 1999), adaptive mesh refinement techniques to increase
the local grid resolution (Strain, 1999; Sussman et al., 1999), and
the hybrid particle level set (PLS) method (Enright et al., 2002).
However, the inherent mass conservation problem still exists. A
coupled level set and volume-of-fluid method (CLSVOF) has been
explored (Bourlioux, 1995; Sussman and Puckett, 2000; Son and
Hur, 2002; Son, 2003; Menard et al., 2007; Yang et al., 2007). The
CLSVOF method takes advantage of both the LS and VOF methods
where mass conservation is well preserved and the geometric
properties, such as normal and curvature, can be easily estimated
from the LS function. Another advantage of the combined method
is that no major modifications are needed to the original LS based
code. This will not only avoid additional coding work but also keep
the desirable properties offered by the LS method, e.g., precise sub-
cell location can be obtained from the LS function, which is neces-
sary for the sharp interface treatment. However, the implementa-
tion of the CLSVOF method is not easy. This is because the VOF
method alone is already difficult, the additional complexity to
the CLSVOF method is the LS re-distance. In the CLSVOF method,
the interface is usually reconstructed via a piecewise linear inter-
face construction (PLIC) scheme and the LS function is re-distanced
based on the reconstructed interface. The implementations of the
CLSVOF method are different in the interface reconstruction, the
advection of the VOF function and LS re-distance procedures. Bour-
lioux (1995) re-distanced the LS function based on the recon-
structed interface in the cells that contain an interface. For cells
without an interface, the LS function is re-distanced by solving
the iteration equation (Sussman et al., 1994). In the study by Suss-
man and Puckett (2000), the LS function was assigned to be the ex-
act distance from the reconstructed interface, where the interface
was reconstructed using the least squares technique and advected
via an Eulerian method. The similar scheme was used in the recent
study by Menard et al. (2007), where modification was made in the
least squares procedure in order to resolve very thin filaments. Son
and Hur (2002) presented a geometrically based implementation
scheme for two-dimensional (2D) and axisymmetric cases, which
was later extended to the 3D case (Son, 2003). Yang et al. (2007)
proposed an adaptive coupled level set and volume-of-fluid meth-
od for 2D problems on unstructured triangular grids.

In this study, the CLSVOF method is implemented in order to
improve the mass conservation property for the numerical simula-
tions of the interfacial flows in ship hydrodynamics. The VOF–PLIC
scheme presented by Gueyffier et al. (1999) is employed for the
interface reconstruction, which is based on a geometric description
of the volume fraction truncated by the interface. The interface is
advected using a Lagrangian method which has been found to be
robust and efficient to implement, with relatively less complexity
and difficulty to extend to three dimensions. In order to meet the
requirement of a large range in spatial resolutions due to the com-
plex flow structures of ship hydrodynamics, this method is ex-
tended to a non-uniform grid and the first-order time integration
scheme is replaced by a second-order Runge–Kutta method. A LS
re-distance algorithm is developed based on the PLIC scheme men-
tioned above. This algorithm significantly simplifies the compli-
cated geometric procedure by finding the closest point on the
reconstructed interface directly without considering the interface
configuration in each computational cell. It is especially efficient
for 3D cases where various possibilities of the interface configura-
tion exist.

The CLSVOF scheme is incorporated into CFDShip-Iowa version
6, a sharp interface Cartesian grid solver for two-phase incom-
pressible flows recently developed at IIHR (Yang and Stern,
2007a,b). In this solver, the interface is represented by the LS meth-
od. A ghost fluid methodology is adopted to handle the jump con-
ditions across the interface, where the density and surface tension
effect are treated in a sharp way while the viscosity is smeared by a
smoothed Heaviside function. The primary objective herein is to
develop the computational code with the capability for simulation
details of wave breaking for ship hydrodynamics with present pa-
per focusing on plunging wave breaking. The performance of the
CLSVOF method is first evaluated through the numerical bench-
mark tests, such as slotted (Zalesak’s) disk, Rider–Kothe single vor-
tex flow, and 3D deformation field. In the benchmark tests, the
velocity fields are prescribed without solving the flow equations.
This allows the direct comparison of the interface modeling meth-
ods alone without the involvement of the flow solver. Verification
and validation studies are conducted with combination of the flow
equations, which include a gas bubble rising in a viscous liquid,
water drop impact onto a deep water pool, and wave breaking of
a steep Stokes wave. A gas bubble rising in a viscous liquid is sim-
ulated first in conjunction with the flow solver, where the bubble
undergoes severe shape deformations. The simulation of a water
drop impact onto a deep water pool is conducted, which involves
complicated flow deformations such as coalescence, air entrain-
ment, and jet bouncing. Wave breaking of a steep Stokes wave is
modeled which serves as a verification test for the plunging wave
breaking study. Finally, plunging wave breaking over a submerged
bump is simulated to demonstrate the capability of the CLSVOF
method to capture strong air/water interactions that commonly
occur in ship hydrodynamics. The overall wave breaking process
and major events are identified from the wave profiles of the sim-
ulations, which are qualitatively validated by the complementary
experimental data. The flow structures are also compared with
the experimental data, and similar flow trends have been observed.

2. Computational methods

2.1. Governing equations and interface jump conditions

For the incompressible viscous flows of two immiscible fluids with
constant properties, the Navier–Stokes equations are given as follows
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@u
@t
þ u � ru ¼ 1

q
r � ð�pIþ TÞ þ g; ð1Þ

r � u ¼ 0; ð2Þ

where t is time, u is the velocity vector, p is pressure, I is the unit
diagonal tensor, q is density, g represents the acceleration due to
gravity, and T is the viscous stress tensor defined as

T ¼ 2lS; ð3Þ

with l the dynamic viscosity and S the strain rate

S ¼ 1
2
½ruþ ðruÞT �; ð4Þ

where the superscript T represents transpose operation. Density and
viscosity are discontinuous across the interface, which is a function of
time and space. They will be defined using LS function later.

Since the fluids considered here are viscous and no phase
change occurs, the velocity across the interface C is continuous:

½u� ¼ 0; ð5Þ

where [ ] denotes the jump at the interface, i.e., f I
L � f I

G for a variable
f with superscript I representing interface. The exact jump condition
for stress is

½n � ð�pIþ lðruþ ðruÞTÞÞ � n� ¼ rj; ð6Þ

where n is the unit vector normal to the interface, r is the coeffi-
cient of surface tension, and j is the local curvature of the interface.
With a smoothed viscosity and continuous velocity field, the stress
jump condition reduces to

½p� ¼ pI
L � pI

G ¼ �rj: ð7Þ
2.2. Interface representation and fluid properties

The interface is represented by the LS function which is cor-
rected to enforce mass conservation with the aid of the VOF func-
tion. The LS function, /, is defined as a distance function which is
negative in the air, positive in the liquid, and zero at the interface.
The VOF function, F, is defined as the liquid volume fraction in a
cell with its value in between zero and one in a surface cell and
zero and one in air and liquid, respectively.

The LS function and the VOF function are advanced using the
following equations, respectively,
Fig. 2. Different configurations of
D/
Dt
¼ @/
@t
þ ðu � rÞ/ ¼ 0; ð8Þ

DF
Dt
¼ @F
@t
þ ðu � rÞF ¼ 0: ð9Þ

The LS advection equation is solved using the third-order TVD
Runge–Kutta scheme (Shu and Osher, 1988) for time advancement
and the fifth-order HJ-WENO scheme (Jiang and Peng, 1999) for
spatial discretization. It should be noted that since the VOF func-
tion is not smoothly distributed at the free surface, an interface
reconstruction procedure is required to evaluate the VOF flux
across a surface cell. Finally, in order to achieve mass conservation,
the LS functions have to be re-distanced prior to being used. This
will be detailed in the next section.

Each phase of constant density and viscosity can be defined
using the LS function in the computational domain and sharp
jumps of the fluid properties occur at the phase interface. In this
study, the density keeps its sharp jump and the viscosity is
smoothed over a transition band across the interface,

q ¼ qG þ ðqL � qGÞHð/Þ;
l ¼ lG þ ðlL � lGÞHeð/Þ;

ð10Þ

where the subscripts G and L represent gas and liquid phase, respec-
tively, the stepwise Heaviside function is

Hð/Þ ¼
1 if / P 0
0 if / < 0

�
; ð11Þ

and the smoothed Heaviside function is

Heð/Þ ¼
1 if / > e
1
2 1þ /

e þ 1
p sin p/

e

� �� �
if j/j 6 e

0 if / < �e

8><
>: ; ð12Þ

where e = 1.5Dx.
The geometric properties, i.e., the normal vector and curvature,

can be estimated readily from the LS function,

n ¼ r/
jr/j ; ð13Þ

j ¼ r � r/
jr/j

� �
: ð14Þ

The flow equations are discretized on a staggered Cartesian grid
with the convection terms approximated by a third-order QUICK
scheme (Leonard, 1979) and other terms by the standard second-order
central difference scheme. A semi-implicit time-advancement scheme
the interface reconstruction.
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is adopted to integrate the momentum equations with the second-or-
der Crank–Nicolson scheme for the diagonal viscous terms and the sec-
ond-order Adams–Bashforth scheme for the convective terms and
other viscous terms. A four-step fractional-step method is employed
for velocity–pressure coupling. The resulting pressure Poisson
equation is solved using the PETSc library (Balay et al., 1997). The code
is parallelized via a domain decomposition technique using the MPI
library. Details of the numerical methods can be found in the studies
by Yang and Stern (2007a,b).
QL QR ∆x

Fig. 3. Lagrangian interface propagation in two dimensions.
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Fig. 4. Schematic for the LS function re-distance in two dimensions.
3. CLSVOF method

In the CLSVOF method, the interface is reconstructed via a
PLIC scheme from the VOF function and the interface normal
vector which is computed from the LS function. Based on the
reconstructed interface, the LS functions are re-distanced via a
geometric procedure for achieving mass conservation. A flow
chart for the CLSVOF algorithm is shown in Fig. 1. The coupling
of the LS and VOF methods occurs during the interface recon-
struction and the LS re-distance processes (shown in the dash-
dotted box in Fig. 1).

3.1. Interface reconstruction

The interface reconstruction is to locate the interface by a spe-
cific scheme from the discrete VOF and LS functions, which serves
two purposes: one is to calculate the VOF fluxes across the faces of
each computational cell with an interface, and the other is to re-
distance the LS function for achieving mass conservation. The
VOF–PLIC scheme presented by Gueyffier et al. (1999) is employed
for the interface reconstruction, where the interface is represented
by a plane in a 3D computational cell,

n � x ¼ nxxþ nyyþ nzz ¼ a; ð15Þ

where a is a parameter related to the shortest distance from the ori-
gin. Different numerical methods for the normal vector estimation
can be found in Aulisa et al. (2007) in the context of the VOF method.
In this study, the normal vector n can be easily obtained from the LS
function. Once the normal vector n is known, the rest is to determine
a from the cut volume defined by the VOF function. In the study by
Gueyffier et al. (1999), the expression for the cut volume was derived
with respect to a, normal vector n and grid spacing Dx,

Volume¼ 1
6n1n2n3

a3�
X3

i¼1

F3ða�niDxiÞþ
X3

i¼1

F3ða�amaxþniDxiÞ
" #

; ð16Þ

where amax ¼
P3

i¼1niDxi, ni refers to nx, ny, nz, and xi denotes x, y, z
with i = 1, 2, 3, respectively. Fn(s) is defined as,

FnðsÞ ¼
sn for s > 0
0 for s 6 0

�
:

For example, the term F3(a � niDx) in Eq. (16) can be written as:

F3ða� niDxiÞ ¼
ða� niDxiÞ3 if a� niDxi > 0
0 if a� niDxi 6 0

(
:

Given the normal vector and grid spacing, the interface recon-
struction is to find a by solving the ‘‘inverse” problem of Eq. (16)
from a given cut volume. The ‘‘forward” problem is to find the cut
volume from a through Eq. (16). Detailed analytical relations con-
necting the cut volume and a for both the ‘‘forward” and ‘‘inverse”
problems are discussed by Scardovelli and Zaleski (2000). With a
careful investigation of the geometry and the Eq. (16), the possible
cases are reduced to five basic configurations as shown in Fig. 2. In
order to meet the requirement of a large range in spatial resolu-
tions due to the complex flow structures of ship hydrodynamics,
a non-uniform grid is adopted in this study. Although the scheme
and analysis (Gueyffier et al., 1999; Scardovelli and Zaleski, 2000)
are based on a unitary cubic grid, its extension to a non-uniform
grid is straightforward.

3.2. Lagrangian interface propagation

Once the interface is reconstructed, the VOF function in the
whole computational domain can be updated. A Lagrangian
interface propagation scheme is used in Gueyffier et al. (1999),
which has been found to be robust and considerably simplifies
programming with an operator splitting strategy to separately
advance the interface in each spatial direction. The Lagrangian
propagation scheme proposed by Gueyffier et al. (1999) is
first-order accurate in time, in this study, a second-order Run-
ge–Kutta scheme is used. The interface equation (15) at time tn

is written as,

nðnÞx xðnÞ þ nðnÞy yðnÞ þ nðnÞz zðnÞ ¼ aðnÞ: ð17Þ

Since the interface advection in each spatial direction is similar,
the following description is only given along x direction. As shown
in Fig. 3, the x component of the velocity within cell ABCD is line-
arly interpolated
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uðxÞ ¼ UR � UL

Dx
xþ UL ¼ Axþ B; ð18Þ

where UR and UL are x velocity component on the two faces,
A = (UR � UL)/Dx, B = UL. Then the x coordinate of each point on
the interface is updated to time tn + Dt with a second-order
Runge–Kutta method,

xð�Þ ¼ 1þ ADt þ 1
2

A2ðDtÞ2
	 


xðnÞ þ 1
2

ABðDtÞ2 þ BDt: ð19Þ

x(n) can be obtained from Eq. (19),

xðnÞ ¼
xð�Þ � 1

2 ABðDtÞ2 þ BDt
h i

1þ ADt þ 1
2 A2ðDtÞ2

: ð20Þ

Eq. (20) is substituted into Eq. (17), the updated interface equa-
tion is obtained,

nð�Þx xð�Þ þ nð�Þy yð�Þ þ nð�Þz zð�Þ ¼ að�Þ; ð21Þ

where

nð�Þx ¼
nðnÞx

1þ ADt þ 1
2 A2ðDtÞ2

; ð22Þ

að�Þ ¼ aðnÞ þ
nðnÞx

1
2 ABðDtÞ2 þ BDt
h i

1þ ADt þ 1
2 A2ðDtÞ2

: ð23Þ

Note that in the above equations, superscript (*) is used
rather than (n + 1) to denote a fractional step, since the interface
is just propagated in x direction at this stage. Eqs. (22) and (23)
can be rewritten as follows, with A = (UR � UL)/Dx and B = UL

substituted,

nð�Þx ¼
nðnÞx

1þ QR�QL
Dx

; ð24Þ

að�Þ ¼ aðnÞ þ nð�Þx Q L; ð25Þ

where QL = (URDt � ULDt)ULDt/(2Dx) + ULDt and QR = (URDt � ULDt)
URDt/(2Dx) + URDt. It is clear that Eqs. (24) and (25) will be reduced
to the original first-order form (Gueyffier et al., 1999) if @u/@x = 0.
After the interface is propagated in y and z directions through the
same procedure, the interface is completely updated to time tn+1.
i,  j, k 
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3.3. LS re-distance

After the advection step, the LS function needs to be re-distanced
in order to achieve mass conservation. Different LS re-distance algo-
rithms can be found in (Bourlioux, 1995; Sussman and Puckett,
2000; Son and Hur, 2002; Son, 2003; Menard et al., 2007; Yang
et al., 2007), which are mainly focused on the 2D examples, and
details for 3D cases are not available. Although the schemes pre-
sented by Sussman and Puckett (2000) and Son and Hur (2002) can
be extended to 3D cases, the procedure is complicated. The algo-
rithm presented in this study significantly simplifies the compli-
cated geometric procedure by finding the closest point on the
reconstructed interface directly without considering the interface
configuration in each computational cell with an interface.

The re-distancing of the LS function includes initial determina-
tion of the sign of the LS function and the subsequent calculation of
the shortest distance from the cell centers to the reconstructed
interface. The sign of the LS function, S/, is given by

S/ ¼ signðF � 0:5Þ; ð26Þ

where sign denotes a function that returns the sign of the numeric
argument. It is obvious that if F > 0.5, the cell center will fall inside
the liquid where the LS function takes the positive sign, and vice
versa.

Next, the magnitude of the LS function is determined, which is
the most important step of the re-distancing process. The basic
idea is to find the closest point on an interfacial cell to the neigh-
boring cell centers. Although various configurations of the recon-
structed interface exist, generally, all the computational cells can
be simply divided into two cases: single-phase cells (i.e., F = 0 or
1) and interfacial cells (i.e., 0 < F < 1) as discussed in Son and Hur
(2002). For two adjoining cells (i, j,k) and (i0, j0,k0), the closest point
on the boundary of cell (i, j,k) to the center of cell (i0, j0,k0) will
always be either at the corner or at the centroid of the cell faces
(Sussman and Puckett, 2000; Son and Hur, 2002). Therefore, these
points should always be considered first when calculating the
shortest distance associated with two adjoining cells. When a cell
contains an interface segment, for a 2D case, the closest point on
the segment will be either one of the two endpoints or the projec-
tion point of the neighboring cell center. As for 3D cases, the recon-
i+1, j+1, k+1 
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structed interface contained in the cell is an n-sided (from 3 to 6)
polygon (see Fig. 2), the possible closest point on the polygon
can be the projection point of the neighboring cell center to the
interface, one of the vertices, and the projection point to one of
the polygon sides from the neighboring cell centers. For example,
as shown in Fig. 4, for cell (i + 1, j), the shortest distance is from
the cell center to face centroid; for cells (i, j + 1) and (i + 1, j + 1),
the closest point is the projection point on the segment and the
endpoint of the segment, respectively. The LS function re-distance
procedure is given below, which includes the determination of
which point is the closest point to the neighboring cells, and the
corresponding calculation of the coordinates of that point.

For a given cell (i, j,k) with a reconstructed interface and its
neighbor cell (i0, j0,k0), where |i0 � i| 6 K, |j0 � j| 6 K, and |k0 � k| 6 K,
K is the number of the computational cells within a narrow band
(e.g., K = 4):

(1) The closest point V on the cell boundary is determined
first. This point is either the face centroid or corner of
the cell (Sussman and Puckett, 2000; Son and Hur, 2002).
The coordinates xV = (xV,yV,zV) are given as xV = xi+l/2,
yV = yj+m/2, and zV = zk+n/2, where l = max(�1,min(1, i0 � i)),
m = max(�1,min(1, j0 � j)), n = max(�1,min(1,k0 � k)). If
DðxV Þ � S/

i0 ;j0 ;k0 < 0, then point V is the closest point to cell
Fig. 6. Comparison of the solutions for different methods after one rotation
(i0, j0,k0), where D(x) is the distance from point V to the
reconstructed interface, which is given by
of a slo
DðxÞ ¼ a� ðnxxþ nyyþ nzzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

x þ n2
y þ n2

z

q ¼ a� ðnxxþ nyyþ nzzÞ; ð27Þ

where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

x þ n2
y þ n2

z

q
¼ 1 according to Eq. (13).
For example, as shown in Fig. 4, the right face center of cell
(i, j) is the closest point to the center of cell (i + 1, j).
If DðxV Þ � S/

i0 ;j0 ;k0 P 0; where point V and the center of cell
(i0, j0,k0) are in the same phase, e.g., for cells (i, j + 1) and
(i + 1, j + 1) in Fig. 4, then go to step (2).

(2) Find the projection point P of point (i0, j0,k0) onto the inter-
face, the coordinates xP = (xP,yP,zP) are determined by
xP ¼ xi0 ;j0 ;k0 þ nDðxi0 ;j0 ;k0 Þ: ð28Þ
If point P falls inside of cell (i, j,k), D(xi0 ,j0 ,k0) will be the short-
est distance. This is the case for cell (i, j + 1) in Fig. 4. As for
the cell where point P falls outside of cell (i, j,k), then go to
step (3).

(3) Find the closest point S on the boundary of interface seg-
ment. In this case, the closest point will be one of the two
end points of the line segment for the 2D cases. As for the
3D cases, it can be one of the vertices of the n-sided polygon,
tted disk. (a) Initial shape; (b) LS; (c) CLSVOF. Grid: 100 � 100.



Fig. 7. Single vortex flow test at t = 4. (a) LS; (b) CLSVOF. Grid: 128 � 128.

Fig. 8. Single vortex flow test at t = 8. Solid line: initial shape; dotted line: LS;
dashed line: CLSVOF. Grid: 128 � 128.

Fig. 9. Single vortex flow test without flow reversal at t = 3. Grid: 128 � 128.

Fig. 10. Comparison of the recovered shapes with different interface propagation
schemes. Solid line: initial shape; dotted line: first order; dashed line: second order.
Grid: 128 � 128.

Fig. 11. Deformation of a sphere. (a) t = 1.5; (b) t = 3.0. Left: LS; right: CLSVOF. Grid:
100 � 100 � 100.

Z. Wang et al. / International Journal of Multiphase Flow 35 (2009) 227–246 233



Fig. 12. Deformation of a sphere. (a) t = 1.5; (b) t = 3.0. Grid: 150 � 150 � 150.

Table 1
Relative mass errors of a deformed sphere.

Time LS (100 � 100 �
100) (%)

CLSVOF (100 �
100 � 100) (%)

CLSVOF (150 �
150 � 150) (%)

t = 1.5 21.8 0.16 0.13
t = 3.0 32.1 0.40 0.27

Fig. 13. Slices of the deformed shape in each coordinate direction at t = 1.0. Contour
lines from �0.20 to 0.20.
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or the projection point of neighboring cell center onto the
side of the polygon. In the 2D algorithm presented by Son
and Hur (2002), the distances to both of the two end points
are calculated and compared to find the shortest distance.
The same algorithm is used in Son (2003) with a procedure
to determine the vertices of the interface segment given
for the 3D cases. The procedure to find all the vertices of
the polygon is complicated since five different interface con-
figurations, as shown in Fig. 2, need to be considered. More-
over, for a 3D case, the projection point of point (i0, j0,k0) onto
the side of the polygon is also the possible closest point on
the polygon boundary, which is not mentioned in the refer-
ence. Obviously, if all the possible closest points are deter-
mined and the distances are calculated, the procedure will
be complicated and computationally expensive. In this
study, a much simple and efficient procedure to locate the
closest point on the interface boundary is presented below.

The auxiliary quantities, xoff = (xoff,yoff,zoff) and xfc = (xfc,yfc,zfc),
are used to determine the coordinates, xS = (xS,yS,zS), of point S.
xoff = (xoff,yoff,zoff) is the distance that the projection point deviates
away from the nearest boundary of cell (i, j,k) in each coordinate
direction (see Figs. 4 and 5), given by

xoff ¼maxðjxP � xij � 0:5Dx; 0Þ; ð29aÞ
yoff ¼ maxðjyP � yjj � 0:5Dy;0Þ; ð29bÞ
zoff ¼maxðjzP � zkj � 0:5Dz;0Þ: ð29cÞ

xfc = (xfc,yfc,zfc) is the nearest face of cell (i, j,k) to the projection
point, given by

xfc ¼ xi þ signðxP � xiÞ0:5Dx; ð30aÞ
yfc ¼ yj þ signðyP � yjÞ0:5Dy; ð30bÞ
zfc ¼ zk þ signðzP � zkÞ0:5Dz: ð30cÞ

Find the max(xoff|nx|,yoff|ny|,zoff|nz|), which is corresponding to
the nearest face of cell (i, j,k) that is intercepted by the interface.
For a 2D case as shown in Fig. 4, e.g., xoff|nx| > yoff|ny|, then set xS = xfc,
and substitute it into the interface equation, yS can be obtained
immediately:
yS ¼ ða� nxxSÞ=ny:

Thus point S (point B in Fig. 4) is found directly without con-
sidering the interface configuration. This will be especially effi-
cient for 3D cases since it is not necessary to find all the
vertices of the interface segment. For a 3D case (see Fig. 5), since
zoff|nz| = max(xoff|nx|,yoff|ny|,zoff|nz|), then set zS = zfc and substitu-
tion to the interface equation obtains:

nxxþ nyy ¼ a� nzzS ¼ a0:

This reduces to a 2D problem, where xS and yS can be easily
obtained by going back to step (2), and step (3) if necessary.
4. Advection tests

The CLSVOF method, along with the pure LS method, is first
tested with prescribed velocity fields without solving the flow
equations. The relative mass errors in all the following tests are
within a fraction of one percent, which is comparable to those pre-
sented in Sussman and Puckett (2000).



Fig. 14. Bubble shapes with different grid sizes. Dot line: coarse; dashed line:
medium; dash-dotted: fine; solid line: finer.
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4.1. Slotted (Zalesak’s) disk

A slotted disc with a radius of 15.0 and slot width of 5.0 is ini-
tially located at (50.0,75.0) on a 100 � 100 computational domain.
This problem, referred to as the Zalesak’s problem, is often used for
the interface modeling scheme test. The prescribed velocity field is
given as:

u ¼ ðp=314Þð50� yÞ
v ¼ ðp=314Þðx� 50Þ

ð31Þ

with the axis of rotation centered at (50.0,50.0).
The results after one rotation for both the LS and CLSVOF

methods are shown in Fig. 6. Slight mass loss can be observed
at the corners of the slot in the LS method. As for the CLSVOF
method, mass is well conserved. The relative mass errors for
the LS and CLSVOF methods are 0.13% and 0.0017%, respectively.
In fact, for a solid body rotation, as in this case, both ou/ ox and
ov/ oy are zero, the Lagrangian advection scheme can exactly
conserve mass without numerical truncations. In the CLSVOF
method, the edges at the corners of the disk slot are smeared
and the symmetry is slightly lost. This is because a PLIC recon-
struction scheme smoothes the regions with high curvatures,
and the discontinuity near the corner will be progressively
smeared out and advected faster in the rotation flow (Scardovelli
and Zaleski, 2003). Since both ou/ ox and ov/ oy are zero, the sec-
ond-order advection scheme discussed in the previous section
performs the same as the original scheme used by Gueyffier
et al. (1999).

4.2. Rider–Kothe single vortex flow

A circle evolving in a shearing flow is another challenging test
for interface modeling schemes, which involves severe topological
changes. The circle is stretched and torn in this vortex flow where
very thin filaments on the scale of the mesh can be produced. A
prescribed shearing flow is given by:

u ¼ ðsinðpxÞÞ2 sinð2pyÞ cosðpt=TÞ;
v ¼ ðsinðpyÞÞ2 sinð2pxÞ cosðpt=TÞ;

ð32Þ
where t is time, T is the time at which the flow returns back to its
initial shape. A circle with a radius of 0.15 is prescribed at
(0.5,0.75) on a computational domain of 1.0 � 1.0. The resulting
velocity field stretches out the circle into a very long, thin fluid ele-
ment which progressively wraps itself towards the center of the
domain.

The results at t = 4 are shown in Fig. 7 where a maximal
stretching is reached with T chosen as 8. It is clear that the
CLSVOF methods well maintains the thin, elongated filament
on the scale of the grid spacing, whereas serious mass loss oc-
curs at both the head and the tail of the filament in the LS meth-
od. The relative mass errors for the LS and CLSVOF methods are
12.04% and 0.04%, respectively. Fig. 8 shows the results at t = 8
at which the flow field returns back to its initial state. The
recovered shape in the CLSVOF method matches the initial shape
very well with a relative mass error of 0.11%. As for the pure LS
method, the recovered shape is far from a circle and mass is lost
by 16.56%. The same case used in Menard et al. (2007) is also
conducted and the results at t = 3.0 are shown in Fig. 9. Breakups
of the filament at the tail can be observed in the present simu-
lation and the mass loss is about 0.077%. The results in Menard
et al. (2007) are closer to the solution obtained from Lagrangian
method. It should be noted that it is difficult to reconstruct the
interface with the PLIC scheme when the filaments of a thick-
ness less than the grid spacing (Lopez et al., 2005). Special mod-
ification has been made to the interface reconstruction in
Menard et al. (2007) for their purpose of modeling the breakup
of a liquid jet, which is clearly suitable for this particular case
(and the sphere stretching case). In a relevant study, Lopez
et al. (2005) used markers on the reconstructed interface to
track fluid structures thinner than the cell size. As mentioned
previously, the primary objective of this paper is to develop
the computational code with the capability for simulation details
of wave breaking in ship hydrodynamics, which includes more
general and complicated air/water interface interactions. Special
treatment to resolve the thin fluid element less than the grid
spacing is not indispensable.

For comparison purposes, the original first-order interface prop-
agation scheme (Gueyffier et al., 1999) is also used in this test. The
computed results at t = 8 are plotted in Fig. 10. A clear phase error
is demonstrated in the first-order algorithm, this is because there is
no implicit part in this scheme (Scardovelli and Zaleski, 2003).
With a second-order interface propagation scheme, phase errors
are avoided.
4.3. 3D deformation field

To demonstrate the ability of the CLSVOF method to capture 3D
deformations, a 3D incompressible flow field which combines
deformations both in the x–y and x–z planes is considered. The
velocity field is given by

u ¼ 2 sin2ðpxÞ sinð2pyÞ sinð2pzÞ cosðpt=TÞ;
v ¼ � sinð2pxÞ sin2ðpyÞ sinð2pzÞ cosðpt=TÞ;
w ¼ � sinð2pxÞ sinð2pyÞ sin2ðpzÞ cosðpt=TÞ;

ð33Þ

where T = 3.
A sphere of radius 0.15 is placed within a unit computational do-

main at (0.35,0.35,0.35). A uniform grid of 100 � 100 � 100 is used.
The sphere is stretched by two rotating vortices which initially scoop
out opposite sides of the sphere and then reverse them back to the
initial shape. The deformed shapes at t = 1.5 when it reaches the
maximum stretching are shown in Fig. 11a, and the recovered shapes
after the flow returns back are shown in Fig. 11b. As shown in
Fig. 11a, the CLSVOF method partially resolves the thin interface film



Fig. 15. Bubble velocity fields with different grid sizes. (a) Coarse; (b) medium; (c) fine; (d) finer.
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produced at the middle section of the stretched shape. A better
recovered shape is obtained in the CLSVOF method than the LS meth-
od as indicated in Fig. 11b. Fig. 12 shows the results computed on a
fine grid of 150 � 150 � 150 which is the same as the case shown
in Fig. 6 of Menard et al. (2007). As shown in Fig. 12a, grid resolutions
are still not enough to resolve the thin membrane stretched at the
center portion of the deformed shape. The relative mass errors for
each case are given in Table 1. The results presented in Menard
et al. (2007) are better since their method is designed for the jet
breakup purpose as mentioned in the previous test.

Fig. 13 shows the slice of the deformed shape at t = 1.0 in each
coordinate direction for both the LS and CLSVOF methods with the
contour lines near the interface plotted. The results obtained from
the LS and CLSVOF methods are very close, although the present
re-distance algorithm in the CLSVOF method is completely different
from the classic LS re-initialization. The contour lines are quite
smooth and continuous, which demonstrates the capability of the
re-distance algorithm presented in this study to reconstruct the LS
functions in the 3D coordinates.

5. Verification and validation examples

5.1. Gas bubble rising in a viscous liquid

In this test, the CLSVOF method in conjunction with the flow
solvers is applied to model a gas bubble rising in a viscous liquid.
The key dimensionless parameters for this problem are the Rey-
nolds number Re, the Eotvos number Eo, and the Morton number
M, which are defined as follows:

Re ¼ qlDU
ll

; Eo ¼ qlgD2

r
; M ¼ gl4

l

qlr3 ; ð34Þ

where ql is the liquid density, D is the bubble diameter, U is the
bubble terminal velocity, ll is the liquid viscosity, r is the surface



Fig. 16. Bubble top positions versus time with different grid sizes.

Table 2
Comparison of computed Reynolds number and the experimental measurement
(Re = 18.3).

Grid Re Deviation (%)

D/12 15.90 13.14
D/15 16.83 8.01
D/20 17.35 5.17
D/30 17.74 3.09
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tension coefficient, and g is the gravity acceleration. The physical
properties (in terms of Eo number and M number) chosen here
are the same as in Fig. 2(g) of the experimental study (Bhaga and
Weber, 1981) with Eo = 339 and M = 43.1. As shown in the experi-
ments (Bhaga and Weber, 1981), a skirted bubble shape is produced
after the bubble reaches its steady state. It is a challenging test for
the interface modeling method since the bubble undergoes severe
shape deformations associated with the formation of a very thin
skirt trailed behind the bubble. The computations are carried out
on a 3D computational domain of x = [�3.3D, 3.3D],
y = [�3.3D, 3.3D], and z = [�3.3D, 8.0D]. As discussed in Hua et al.
(2008), when the domain size is beyond six bubble diameters, no
significant change in the simulation results is observed. The wall
confinement effect to the terminal velocity and shape can be ne-
glected. Four different grids are used for the grid sensitivity study,
where the number of computational cells in an initial bubble diam-
eter is 12, 15, 20, and 30, respectively.
Fig. 17. Comparison of the bubble terminal shapes. (a) Experiment by Bhaga and
The predicted bubble shapes at t = 8.51 (time scale,
ffiffiffiffiffiffiffiffiffi
D=g

p
) with

different grid sizes are shown in Fig. 14. As shown in the figure, the
edge of the bubble skirt tends to move towards the axis of the bub-
ble from the coarse grid to the fine grid. This is because higher cur-
vatures can be resolved with a finer grid. The relative mass errors
for all the cases in Fig. 14 are 0.16–0.67%. Fig. 15 shows the corre-
sponding velocity vector fields obtained on different grids. The
position of the bubble top versus time plots with different grid
sizes are given in Fig. 16. The computed rise velocity in terms of
Reynolds number and the deviations from the experiment mea-
surement are presented in Table 2. The terminal velocity on the
finer grid is close to the experimental result (18.3) and agrees very
well with the numerical value (17.76) calculated by Hua et al.
(2008). Fig. 17 shows the computed 3D bubble shape (t = 8.51)
compared with the experimental image (Bhaga and Weber, 1981)
and the computational prediction using the front tracking method
(Hua et al., 2008). The bubble shape obtained in the present study
is closer to the experiment than the front tracking prediction. Both
the experimental image and the present simulation show that the
edge of the bubble skirt contracts inwards rather than opens up as
in the front tracking method (Hua et al., 2008). The average thick-
ness of the bubble skirt is approximately 0.083D in the present
simulation.

5.2. Liquid drop impact

In the study by Morton et al. (2000), a 2.9 mm water drop
impact on a deep water pool was simulated using the VOF method.
It is a good example for interface modeling methods since it in-
volves complicated flow deformations such as coalescence, air
entrainment and jet formation. In this study, the experimental case
with a falling height of 170 mm in Morton et al. (2000) is simu-
lated, where the corresponding Fr = 85, We = 96, and Re = 4480.
The simulation conditions are the same as those used in Morton
et al. (2000) except that the current simulations are carried out
on a fully 3D rather than a 2D axisymmetric domain. Details of
the computational setup can be found in Morton et al. (2000).

Time sequences of the drop impingement process along with
the video images and simulations presented by Morton et al.
(2000) are shown in Fig. 18. The major events of the impact pro-
cess, such as the formation of the vortex rings, entrapment of an
air bubble during the cavity collapse and formation of the thin
high speed liquid jet, are well captured in the current simula-
tion. The predicted interface profiles also match both the exper-
imental image and simulations very well. Due to the neglect of
the gas phase dynamics in the numerical model used by Morton
et al. (2000), the bubble could not be properly captured in their
simulations. The cavity depths versus time are plotted in Fig. 19
with the results compared with both the experimental and
numerical results presented by Morton et al. (2000). As shown
in the figure, the present simulation agrees quite well with the
numerical results at the early stage of the computations. Slight
Weber (1981); (b) simulation by Hua et al. (2008); (c) present simulation.



Fig. 18. Time sequences of a water drop impingement onto a deep water pool. (a) Experiment (Morton et al., 2000); (b) simulation (Morton et al., 2000); (c) present
simulation.
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oscillations of the depth can be observed at the later stage. This
is likely due to the instability at the bottom of the cavity when
it approaches maximum depth. Nevertheless, the averaged max-
imum depth still matches both the experimental and numerical
measurements.
5.3. Wave breaking of a steep Stokes wave

Wave breaking of a steep Stokes wave (Chen et al., 1999) is sim-
ulated in this section. This case serves as a verification test of the
accuracy of the code for the plunging wave breaking followed in



Fig. 19. Comparison of cavity depths of the experiments and simulations.
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the next section. The computational conditions and physical
parameters are the same as those used in Chen et al. (1999), details
of the computational setup is not given herein. The snapshots of
the time sequence of the wave breaking process are presented in
Fig. 20. The wave breaking process shown in the figure includes
the formation of the steep wave crest, overturning jet, wave plung-
ing, air entrainment and splash-up. It is clear that the major wave
breaking events are well reproduced in the present simulation, and
the predicted wave profiles are in very good agreement with the
simulation conducted by Chen et al. (1999). A little difference
occurs after the wave plunges. This is likely because the surface
tension model used in Chen et al. (1999) is different from the pres-
ent study. During the wave overturning process at t = 1.4, the max-
imum velocity magnitude is about 0.827 which is very close to that
reported in Chen et al. (1999).
6. Plunging wave breaking over a submerged bump

Wave breaking processes especially for plunging wave breaking
are not yet well understood, including steep wave formation, jet
overturning, splash-up, air entrainment, subsequent events, insta-
bilities and organized vortices, and turbulence structures. Recent
experimental fluid dynamics (EFD) and computational fluid
dynamics (CFD) have focused on qualitative descriptions of the
wave breaking process; energy losses; 2D and 3D vortex and tur-
bulent structures; wave impact; air entrainment; surf zone model-
ing; and multi-scale turbulence model. The most relevant previous
experimental and computational studies on plunging breaking
wave process and velocity and turbulence flow fields can be found
in the studies (Peregrine, 1983; Bonmarin, 1989; Tallent et al.,
1990; Melville et al., 2002; Chang and Liu, 1999; Toomas, 2001;
Watanabe et al., 2005). A complementary experimental and com-
putational study of plunging breaking waves generated in an open
channel flume using a bottom bump and impulsive accelerated
flow was presented by Ghosh et al. (2007). The geometry is of par-
ticular relevance to ship hydrodynamics, since the breaking
involves body–wave interactions. The experiments were carried
out in an open channel flume (9 m long, 0.6 m wide, and 0.43 m
high). The time evolution of the transient wave and its flow prop-
erties were measured using EFD: upstream and downstream veloc-
ity and flow rates using pitot probes; air–water interface elevation
measurements and 2D particle image velocimetry (PIV) in the
wave breaking region. The side and plan views of the experimental
setup are shown in Fig. 21a and b. The figures show the flume to
scale with the bump fixed at the flume bottom. Cartesian coordi-
nate system is used where, x is the stream-wise direction, y is
the span-wise direction and z is the vertical direction. The bump
center is placed at x = 0 and z = 0 and the flume center plane is at
y = 0. All length scales are normalized using the bump height
(H = 0.1143 m), unless otherwise mentioned. The flume is con-
nected to two pumps each of 7.5Hp rating. The objective was to
suddenly accelerate the fluid from zero to maximum velocity in
the shortest time to replicate the impulsive start flow conditions
as closely as possible and also create waves of maximum height.
To achieve this both pumps are run simultaneously to attain max-
imum pump power. Each pump is controlled by a frequency driver
where the pump speed is set using a frequency scale of range 0–
60 Hz. After setting the initial stationary water depth f = 2, the
pumps are primed by vacuuming out any entrapped air in the areas
of the pump lines that are above the flume water surface. The flow
is accelerated from zero to a pump setting of 55 Hz within 7 s
which corresponds to a mean upstream velocity of 0.39 m/s at
the time of breaking. The flume has two pipes underneath the
channel and each pipe is connected to each pump. The flow in
the channel is from left to right while in the pipes it is from right
to left as highlighted by the arrow in Fig. 21a. More details of the
experimental setup can be found in Ghosh et al. (2007) and Ghosh
(2008). The CFD study of the plunging wave breaking is presented
here with a focus on the wave breaking process. Since strong
water/air interactions are involved during the wave breaking pro-
cess, it is a very challenging case for interface modeling method.

The numerical simulations are conducted on a 2D computa-
tional domain of x = [�52,44] and z = [0,5], with a grid size of
768 � 256. The boundary conditions and the non-uniform grid
structure are given in Fig. 22. A sharp interface immersed boundary
method (Yang and Balaras, 2006) is adopted here to treat the
immersed bump. The inlet velocity imposed at the left boundary
is U = 0.87 m/s for water and zero for air. The initial free surface
elevation is f = 1.85 and a uniform velocity field of 0.87 m/s is pre-
scribed in the water domain at t = 0 with the air phase at rest. The
corresponding Reynolds number, Re = qlUH/ll, is 99441 and Froude
number, Fr ¼ U=

ffiffiffiffiffiffi
gH

p
, is 0.82 based on the bulk inlet velocity and

the bump height (H = 0.1143 m). Ghosh (2008) performed phased
average experiments 7 times (about 24 individual tests for each
phased average), but with limited documentation of overall flume
flow (upstream/downstream wave elevations, velocities, and ven-
turi flow rates). Present CFD is contemporaneously with the exper-
imental study of Ghosh (2008) and is used to guide and analyze
EFD. In the experiments, the flow is transitional and completely
impulsive and wave breaks during the flow acceleration process.
The experimental flow conditions are complicated and hence are
difficult to model, for simplicity, constant inlet flow condition is
used in the computations. The initial and inlet velocity and free
surface elevation are chosen based on the sensitivity study con-
ducted in Ghosh et al. (2007) in order to match wave breaking loca-
tion in the EFD. Reins (2008) recently performed three additional
phase averaged experiments for the same experimental setup as
Ghosh (2008), including detailed documentation of the overall
flume flow. These EFD data along with those obtained by Ghosh
(2008) will be used for gradual acceleration conditions in the fu-
ture investigations. The time step initially is 5 � 10�5 and then is
reduced to 1 � 10�5 after the flow becomes violent due to wave
breaking.

Calculations are performed on three different grids with consec-
utively reduced (by a factor of

p
2) sizes from 1088 � 352 to

768 � 256 and 544 � 176 for grid sensitivity study. Computational



Fig. 20. Snapshots of the time sequence of a plunging breaking wave. (a) Simulation by Chen et al. (1999); (b) present simulation.
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results on the three grids are shown in Fig. 23, which only shows
the jet overturning process. The overall structures of the interface
obtained on the three grids are similar. The jet tip is much thinner
and sharper on a fine grid than on a coarse grid since a fine grid can
capture more details of the interface structure with higher grid res-
olutions. As discussed in Lubin et al. (2006), grid convergence anal-
ysis is quite difficult and questionable for this kind of flow which is
characterized by unsteady air/water interface breaking. Although
much smaller interface structures can be resolved with higher grid
resolutions, the overall large scale dynamics of wave breakings are
not affected by the small interface structures. The grid with a med-
ium size is used in the following simulations.

The time sequences of wave breaking process computed using
both the LS and CLSVOF methods are given in Fig. 24. The time is
non-dimensionalized by the time scale H/U, where U is the inlet
velocity for CFD and mean upstream velocity for EFD. As will be
discussed later, the major events in the wave breaking process
are maximum wave height, first plunge, oblique splash, vertical
jet, repeated processes, chaotic motions and broken wave swept
downstream. At the early stage of the computations, the general
structures of the wave profile are very similar. The maximum wave
height (t = 0) and the first jet plunge (t = 1.75) are well demon-
strated in both methods. After the jet hits the trough surface
(t = 2.82), an oblique splash-up with many small droplets can be
found in the CLSVOF method, this is in agreement with the exper-
imental findings. As for the LS method, the oblique splash-up is not
properly captured. The vertical jet reaches its maximum height
(t = 4.80), which can be seen in both methods. In the subsequent



Fig. 21. Schematic of the experimental setup. (a) Side view. The upstream and downstream pitot probe arrangements are shown in close-up views. The close-up of the 2D PIV
measurement areas near the wave breaking region is also shown. (b) Top view.

Fig. 22. Computational domain and grid structure for wave breaking over a submerged bump. (a) Computational domain; (b) grid structure.
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events (t = 6.01–8.14), the CLSVOF method shows the second
plunge, oblique splash-ups and vertical jet, and the third plunge
at last. In LS method, however, only the second jet plunge is indi-
cated after which the flow appears to enter a chaotic motion of
air and water. Moreover, in the entire wave breaking process, small
scale droplets and air bubbles can hardly be found in the LS meth-
od. The CLSVOF method is likely more suitable for modeling the
wave breaking phenomenon, since it is able to capture more details
of the wave breaking events.
The plunging wave breaking process has been characterized in
the previous studies (Peregrine, 1983; Bonmarin, 1989; Tallent
et al., 1990) by four major phases including steep wave formation,
jet formation and overturning, splash-up and air entrainment as
summarized in Table 1 in Ghosh et al. (2007). The first two phases,
i.e., steep wave formation and jet overturning, are very similar in
most experimental and numerical studies even though the flow
conditions and the mechanism that induces wave breaking are dif-
ferent. However, the subsequent phenomena after the jet overturn-



Fig. 23. Comparison of three different grids: coarse grid (black solid line), medium grid (red solid line), fine grid (black dotted line). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this paper.)
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ing observed in the above studies vary considerably. The angle of
the overturning jet just prior to the plunge varies with different
studies, while the surface profile beneath the jet is approximated
with the similar elliptical shape. After the jet hits the trough sur-
face, the splash-up angles are different for different studies, and
different researchers have different opinions about the origin of
the splash-ups. Most of the previous studies have reported occur-
rence of successive splash-up cycles with reduced energy after
the first plunge and the degeneration of the flow into a chaotic
motion.

Herein, wave breaking is triggered by the flow over a sub-
merged bump which differs significantly from the previously
mentioned experimental studies regarding flow conditions, jet
overturning directions and subsequent events. The following
major events in the plunging wave breaking process have been
identified: maximum wave height, first plunge, oblique splash,
vertical jet, two repeated processes, chaotic motions and broken
wave swept downstream as shown in Fig. 24. Fig. 25 summa-
rizes the overall PIV results (close-up views) in the wave break-
ing region and its comparison with CFD at various time steps
that describe the most important events in the wave breaking
process. Video images of the plunging breaker with reference
scales are presented in column 1. PIV images with overlaid 2D
CFD air–water interface profiles are shown in column 2. tb is a
reference time at which the wave reaches its maximum height,
which is chosen as the initial time in Fig. 25 for comparing
experimental and numerical results. The CFD air–water interface
profiles were initially studied to identify the overall wave break-
ing process and its major events. Subsequently, those events
were also identified qualitatively from the video and PIV images
in EFD. In the current layout of Fig. 25, the EFD and CFD results
are compared side by side for those particular events and hence
the time instances do not necessarily match due to the differ-
ences in the initial conditions. Although the CFD time is given
in the CFD U contour plot, unless otherwise specified, the EFD
time is always referred to in the discussions.

At time t = 0 the wave crest becomes steepest when it reaches its
maximum height. As the wave crest starts to overturn the steep
angle hE, defined as the angle between the horizontal free surface
and the jet’s longitudinal axis, also increases, and its edge breaks into
some small droplets in air. At the instant just prior to the first plunge,
the CFD steep angle is approximately 50 degrees which is less than
the EFD value. At t = 0.22, the first plunge occurs when the overturn-
ing jet impinges onto the free surface of the trough. The hE increases
to approximately 75 and 85 degrees in the CFD and EFD profiles,
respectively, compared to the previous time step. With the overturn-
ing jet, a large amount of air below the jet is entrapped which forms a
big air bubble. The entrapped air bubble can also be observed in the
PIV image at t = 0.22. The size of the air bubble in CFD is almost 2.0
times larger than the EFD. The CFD results show that the entrapped
air bubble initially resembles an ellipse with an axis ratio of 2.153
which is slightly larger than those (usually,

p
3) found in the EFD



Fig. 24. Instantaneous free surface profiles of the wave breaking process.
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and previous studies. Once the jet tip touches the trough surface,
splash-up initiates and develops at the location where the jet
impacts. At t = 0.67 as shown in CFD plot, an oblique splash-up is
generated towards the upstream direction with a spray region. This
spray region is more clearly shown in the experimental video image.
The PIV image also shows that the red (the color indicates bubble
concentration) region intensifies. This oblique splash-up appears
to ‘‘rebound” from the overturning jet rather than originates from
the trough surface, which can be clearly seen from the CFD velocity
vector field. The splash-up intensifies and a vertical jet can be clearly
observed in the CFD profiles with its maximum height of f = 2.15 at
t = 1.12. The video image shows the spray zone grows in size with
more intense splash-up reaching a maximum height of f = 2.22. In
between x = 2.2 and x = 3.6 the broken wave creates an aerated
region. A vertical jet can also be observed at x = 3.0 that is ejected
from the trough. The CFD velocity vector field shows that the fluid
of vertical jet mainly comes from the disturbed trough surface. After
the first wave plunge, the splash-up initially originates from the
plunging crest which forms an oblique spray and intensifies with
more water coming from the trough. This agrees with the explana-
tion (Tallent et al., 1990) on the origin of the splash-ups. The initially
entrapped air bubble eventually breaks up at around t = 1.34 (not
shown here). Severe bubble shape deformations can be seen in the
CFD plot as it moves downstream. As the vertical jet decreases in
height, another jet is formed which starts to initiate the second
plunge, followed by the second oblique splash-ups and the second
vertical jet. After the third jet impacts onto the trough surface, multi-
ple small scale splash-ups and plunges keep occurring, and finally
the broken wave is swept downstream leaving a trail of aerated
region. Two repeated processes are observed in the present CFD



Fig. 25. Impulsive breaking waves behind a bump. From left to right: video image; PIV image with overlaid CFD wave profile; EFD U contours and CFD U contours.
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results, in the recent EFD study by Reins (2008), four repeated pro-
cesses are identified. The number of repeated processes likely
depends on the acceleration flow conditions.

The CFD profiles show that the wave breaking occurs further
downstream compared to the EFD profiles, which is clearly seen
in the first and second plunging events. This is likely because the
initial mean flow velocity is higher in the CFD simulations. It is
found that the entrapped air bubble after the first plunge collapses
in EFD, but remains intact in CFD. This may be because of 3D insta-
bility, which can contribute to the relatively short life of the air
bubble (Peregrine, 1983) that does not exist in the 2D simulations.
A clear two-phase (aerated) region is demonstrated in the experi-
mental video images after the jet overturning. However, it is hard
to define an exact two-phase region for the 2D simulations. Since
the interface is modeled via an interface tracking method which
is not able to capture air bubbles or droplets at the scale less than
the grid spacing, a mixture model is needed in order to properly
simulate the aerated region in future investigations.

The third and fourth columns of Fig. 25 show the EFD U
contours and the CFD U contours, respectively, at the time steps
that correspond to the wave breaking process with the velocity
vectors overlaid on top. All contour plots and velocity vectors are
presented in dimensional form. All EFD data is ensemble averaged
and CFD data is instantaneous. The mean stream-wise velocity
component within the water phase of the display area at each time
step has been subtracted from the vector fields for both EFD and
CFD. To be consistent with the vector representation the mean
stream-wise velocity has also been subtracted from the back-
ground contours. The CFD velocity vectors of column 4 are of the
same magnitude as the EFD vectors of column 2 and not the vec-
tors in column 3 whereas, the EFD velocity contours in column 3
are of the same scales as the CFD velocity contours of column 4.
Even though the CFD simulations were conducted for a much
larger domain size, in the present layout the CFD x and z limits
are matched with the EFD scales for comparison. At time t = 0,
the EFD results show a positive U region extends towards down-
stream with the magnitude reduced in the region where steep
wave is formed. A negative U region in the crest initiates and inten-
sifies after the first plunge. For 0 6 t 6 1.12, the positive U region
moves towards downstream with the magnitudes continuing to
increase, the EFD results show resolvable details of steep wave for-
mation, first plunge, oblique splash and the vertical jet. Similar
flow trends can be found in CFD U contours, with more detailed
resolutions of plunging, splashing, vertical jet and bubble entrain-
ment events in the wave breaking region. The impingement of the
jet onto the free surface induces strong air flows as shown in the
CFD U contours, which result in a pair of positive vortices immedi-
ately before jet. After falling jet impacts onto trough surface and
the splash-up moves upwards, a series of vortices are generated
and air flow turns to be stronger because of splash-ups and vertical
jet. In the EFD, a clockwise rotating span-wise vortex is found to be
shed from the bump and convected in the vertical direction by the
rising fluid and also in the downstream direction by the mean flow.
This bump vortex cannot be observed in the CFD results, this is due
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to the differences in the impulsive start conditions. The wave
breaking vortex is clearly demonstrated in the CFD vorticity plot
(not shown here) as part of plunging and bubble entrainment
events.
7. Conclusions and future work

The CLSVOF method has been implemented in order to improve
the mass conservation property of the LS method. The interface is
reconstructed via a PLIC scheme and the LS function is re-distanced
based on the reconstructed interface. The interface is advected
using a Lagrangian method with a second-order Runge–Kutta
scheme for time integration. A LS re-distance algorithm is devel-
oped, which significantly simplifies the complicated geometric
procedure by finding the closest point on the reconstructed inter-
face directly without considering the interface configuration in
each computational cell. It is especially efficient for 3D cases where
various possibilities of the interface configuration exist. The perfor-
mance of the CLSVOF method has been evaluated through the
numerical benchmark tests and verification and validation exam-
ples, where mass conservation has been well preserved.

The computed results of a gas bubble rising in a viscous liquid
are compared with the available numerical and experimental re-
sults, and good agreement is obtained in terms of the predicted
bubble shape and bubble rising velocity. In the test of a water drop
impact onto a deep water pool, details of the drop impingement
process, such as formation of the vortex rings, air entrainment
and rebounding liquid jet are captured in the CLSVOF method.
The numerical results match both the available experiments and
simulations very well. Wave breaking of a steep Stokes wave is also
modeled and the results are very close to the numerical results
available in the literature.

The CLSVOF method is applied to simulate plunging wave
breaking over a submerged bump, and the computational results
are compared with the complementary EFD data. The major wave
breaking events are identified from the CFD results and are quali-
tatively confirmed by the EFD findings. CFD studies reveal that
the major events at the early wave breaking stage, such as maxi-
mum wave height, first plunge and splash-ups are similar to the
observations reported in the literature. Subsequent events are
examined and some distinct wave breaking events, such as vertical
jet formation, two (even more) repeated processes with reduced
amplitudes, chaotic motions and broken wave swept downstream,
are identified in the later wave breaking stages. The number of re-
peated processes likely depends on the acceleration flow condi-
tions. CFD results suggest that the first oblique splash-up appears
to rebound from the overturning jet, whereas the first vertical jet
originates from the disturbed trough. The flow structures are also
compared with the EFD data qualitatively, similar flow trends have
been observed in the CFD results. Due to the different initial flow
conditions used in the CFD, bump vortex observed in the EFD can-
not be found in the CFD.

For the plunging wave breaking, further investigations using the
gradual acceleration conditions based on EFD will be made in order
to quantitatively validate the CFD results. A fully 3D large eddy
simulation (LES) including surface tension is necessary for a better
understanding of the physics of the plunging wave breaking phe-
nomenon. In order to further validate the CLSVOF method, more
test cases, such as spray sheet formation and breakup induced
around a ship bow, will be investigated in the future work.
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